
lerchphi User’s Guide

Sergej V. Aksenov1,2) and Ulrich D. Jentschura3)

1) Department of Microbiology and Immunology,
University of Michigan, Ann Arbor, MI 48109, USA

2) Current address: Department of Zoology,
University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK

3) Institute of Theoretical Physics,
Dresden University of Technology, 01062 Dresden, Germany

Email: sa354@cam.ac.uk, jentschura@physik.tu-dresden.de

May 1, 2002

Abstract This document describes the usage of a C program that calcu-
lates Lerch’s Φ transcendent of real arguments using convergence accel-
eration methods (nonlinear sequence transformations and the combined
nonlinear-condensation transformation).

Contents

1 Conditions of Use 2

2 Availability 2

3 Purpose 2

4 Basic formulas 2

5 Usage of the lerchphi Program 3

6 Details of the Implementation 4

7 Algorithms Used 5

8 Extended Precision 7

1

1 Conditions of Use

• This document and software (file lerchphi.c) described herein is copyright by Sergej V.
Aksenov and Ulrich D. Jentschura.

• This software and its constituent parts come with no warranty, whether expressed or
implied, that it is free of errors or suitable for any specific purpose. It must not be used to
solve any problem, whose incorrect solution could result in injury to a person, institution,
or property. It is user’s own risk to use this software or its parts and the authors disclaim
all liability for such use.

• This software is distributed “as is”. In particular, no maintenance, support, troubleshoot-
ing, or subsequent upgrade is implied.

• The use of this software must be acknowledged in any publication that contains results
obtained with it; please cite [1].

• The free use of this software and its parts is restricted for research purposes; commercial
use require permission and licensing from Sergej V. Aksenov and Ulrich D. Jentschura.

2 Availability

The source of the LerchPhi program lerchphi.c, the example driver file test.c, example make-
file, and a sample output of a run of test.c, as well as this documentation can be downloaded
from the web pages of the authors [2].

3 Purpose

The C program contained in the file lerchphi.c calculates Lerch’s transcendent which is defined
by the following infinite series:

Φ(z, s, v) =
∞∑

n=0

zn

(n + v)s
, |z| < 1 , v 6= 0,−1, (1)

[See Eq. (1) on p. 27 of Ref. [3]]. We consider the case of real parameters z, s, and v only.
The C language implementation of the combined nonlinear-condensation transformation
(CNCT) described here is motivated by the virtual absence of freely available and transportable
C code for Lerch’s transcendent for real arguments.

4 Basic formulas

Assume that the elements of the sequence {sn}∞n=0 represent partial sums

sn =
n∑

k=0

a(k) (2)

2

of an infinite series
∞∑

k=0

a(k) , a(k) ≥ 0 , (3)

e.g. that in Eq. (1). We denote the limit s ≡
∑∞

k=0 a(k).

The first step of the CNCT is the Van Wijngaarden transformation [5] of the nonalternating
input series (3), whose partial sums are given by (2), into an alternating series

s =
∞∑

j=0

(−1)jAj . (4)

The quantities Aj are defined according to

Aj =
∞∑

k=0

b(j)
k , (5)

where
b(j)

k = 2k a(2k (j + 1)− 1) . (6)

The second step is to apply an appropriate sequence transformation to the series of partial sums

Sn =
n∑

j=0

(−1)j Aj (7)

of the Van Wijngaarden transformed series (4) of the first step. We use the delta sequence
transformation [6, 7] which is constructed according to [Eq. (8.4-4) of [7]]

δ
(0)
k (1,Sn) =

k∑
j=0

(−1)j

(
k

j

)
(j + 1)k−1

(k + 1)k−1

Sj

ωj

k∑
j=0

(−1)j

(
k

j

)
(j + 1)k−1

(k + 1)k−1

1
ωj

. (8)

The quantities appearing in Eq. (8) have the following interpretation: Sn are the elements of an
alternating sequence whose convergence is to be accelerated, and the ωn are remainder estimates,
i.e. estimates for the truncation error ωn ≈ rn defined by rn = Sn − s. Remainder estimates are
calculated as ωn = Sn+1 − Sn.

5 Usage of the lerchphi Program

The program consists in a self-contained file lerchphi.c written in ISO C. The file lerchphi.c
should be compiled with any user written main program. A test program test.c is provided
which calculates Lerch’s transcendent for several combinations of parameters, as well as a make-
file (written for Unix systems) to build the executable test. We built and ran an executable

3

from this makefile on a Macintosh computer with the PowerPC G3 processor, Mac OS X v10.1.3,
Darwin Kernel v5.3, and on an INTEL–based LINUX system running SuSE Linux 7.3, as well as
a Sun workstation running SunOS. However, one should rather view these makefiles as templates
and modify for the particular operating system and compiler.
Further useful explanations are provided in the README file which forms part of the current
distribution.
The main program should call lerchphi() as follows

flag = lerchphi(&z, &s, &v, &acc, &result, &iter);

Here, the variables should be defined in the main program and have the following types:

int flag, iter;

double z, s, v, acc, result;

The meaning of these variables is as follows: z, s, v carry the arguments of Lerch’s transcendent
Φ(z, s, v); acc stores the value of the desired relative accuracy of the result; result holds the
calculated value of Lerch’s transcendent; and iter is the number of iterations in the convergence
acceleration loop needed to reach the accuracy acc. A positive (nonzero) value of flag signifies
that an internal error occurred in the calculation. The error flags are explained in Table 1 below.
The range of valid arguments z, s and v of the C program is determined by the properties of
the defining series representation (1): we require −1 < z < 1, and s, v to be real. The case of
negative v is problematic. The C program stops with an error flag if v is a negative integer
[one of the terms of the defining series of Lerch’s transcendent has a vanishing denominator
for negative integer v]. Finally, if v is negative non-integer, then we require s to be integer (for
negative non-integer v and non-integer s, the C function pow is not well-defined).

6 Details of the Implementation

The use of the CNCT for positive z, z close to unity, removes the principal numerical difficulties
associated with the slow convergence of the series (1) in this parameter region. For negative z,
the partial sums of the – in this case alternating – series (1) are directly used as input data
for the delta transformation (8), and the Van Wijngaarden step (4) – (6) of the CNCT may be
skipped. This corresponds to the standard use of nonlinear sequence transformations as efficient
accelerators for alternating series [7].
The LerchPhi program has two subroutines: aj() which calculates the Van Wijngaarden terms
Aj in Eq. (5), and lerchphi() that calculates the sequence of CNC transforms (8). Table 1
summarizes certain special conditions and genuine error conditions handled by lerchphi() and
lists the flag values generated.
The program checks for parameters z, s, and v to be in the domain of validity of the series
representation of Lerch’s transcendent (1). The program also refuses to calculate if v < 0 and s
is not an integer, which is problematic for the standard C function pow(). Note that the program
can determine only up to machine accuracy whether the parameters v and s are integer.

4

Special case Program action Flag

z = 0 Return 1/vs† 0

z < −0.5 Use (2) as input for (8)‡ 0

|z| ≤ 0.5 Use term-by-term summation of (1) 0

v < 0 , v 6∈ Z \ N, s ∈ Z Use (9) with m = −[[v]] 0

|z| ≥ 1 Error exit 1

v < 0 , v ∈ Z \ N Error exit 2

v < 0 , v 6∈ Z \ N, s 6∈ Z Error exit 3

Overflow in index of a(k) [Eq. (6)] Return current iterate 4

Underflow in ωj [Eq. (8)] Return current iterate 5

Over max. iterations Return current iterate 6
†This is just the first term of the series (1)

if we use the definition 00 = 1.

‡The Van Wijngaarden step (4) – (6) is not needed because

the series is already alternating [replace Sn → sn in Eq. (8)].

Table 1: Special cases and error conditions in the C program lerchphi() which calculates
Lerch’s transcendent.

7 Algorithms Used

We use the following relation [Eq. (2) on p. 27 of Ref. [3]]

Φ(z, s, v) = zm Φ(z, s, m + v) +
m−1∑
n=0

zn

(n + v)s
. (9)

to transform from negative to positive values of v.

In the term-by-term summation of the defining series (1) for |z| ≤ 0.5, we use the following
recursion relationship for the terms a(k) of Lerch’s power series:

a(k + 1)
a(k)

= z

(
v + k

v + k + 1

)s

. (10)

For the calculation of the Van Wijngaarden condensed series (5) of odd index, we use the
following recursion [1, 8]:

Ai+1 = 1/2 (Ai/2 − a(i/2)) , (11)

where i in the main loop of the program is an even integer.

5

The final output of the CNC transformation is a sequence of approximants Tn ≡ TCNC(n)
that converge to the value of Φ(z, s, v). We define the ratio of two consecutive differences of
approximants as

xn =
∣∣∣∣ Tn − Tn−1

Tn−1 − Tn−2

∣∣∣∣ . (12)

The xn behave asymptotically, as shown in [1] for a class of model problems, like a geometric
series (within the region of convergence). Therefore, a good estimate for the truncation error
Tn − T∞ can be obtained by summing the geometric series

∑∞
k=1 ρ̄k |Tn − Tn−1| where our best

estimate for ρ̄ is ρ̄ ≈ xn. Therefore, we use the following convergence criterion to terminate the
calculation of the CNC transforms:

2
xn

[
1

1− xn

∣∣∣∣Tn − Tn−1

Tn

∣∣∣∣] < acc . (13)

Here, acc is the specified desired relative accuracy of the result. The factor 2/xn in (13) is a
heuristic “safeguard factor” introduced with the notion of avoiding a premature termination of
the calculation of successive transforms in the problematic case of two consecutive transforms
accidentally assuming values very close to each other. Such a situation may arise before the
asymptotic, geometric convergence sets in. The term in square brackets in (13) represents the
remainder estimate based on the geometric model xn ≈ ρ̄ [see Eq. (12)].

Please note that lerchphi.c relies on the header file float.h which contains floating-point
specifications for the minimum representable double precision number and machine epsilon on
a system. This header file may not be present on all computer systems on which lerchphi.c
is compiled. If it is desired to code the relevant arithmetic constants explicitly, then one should
modify lines 50 and 51 of lerchphi.c.

Finally, we would like to point out that the current implementation of lerchphi relies on only
two algorithms (direct summation of the defining power series and convergence acceleration), and
that one cannot expect to obtain optimal performance in all parameter regions, let alone analytic
continuations for those cases where the power series (1) diverges. As regards the evaluation
of special functions with very large (excessive) parameter values, it is known that asymptotic
expansions can provide optimal methods of evaluation. These are not implemented in the current
version of lerchphi.

Additionally, the use of the defining power series (1) entails eo ipso numerical problems, when
only double-precision arithmetic is used. Consider the following two representative parameter
combinations:

(case 1:) z = 0.99999 , s = 2 , v = 103 ,

(case 2:) z = 0.0003 , s = 2 , v = −3.00000 00000 0001 .
(14)

When using the series (1) in double precision, problems result for both cases.

Case 1. The use of the CNCT implies that terms of very large index of the input series have to be
evaluated, while avoiding the necessity to evaluate all terms until convergence is reached. In case
1, the argument z is very close to unity, but this should a priori not be a problem – the CNCT is

6

designed to work with this problematic case. However, since v is large, the contribution of terms
of large index as compared to the terms of small index in (1) becomes numerically more signifi-
cant. This entails a loss of precision when trying to evaluate expressions like 0.99999L where L
is a very large integer. This expression can be written as exp(L ln 0.99999), and the numerical
cancellations encountered in the evaluation of ln 0.99999 ≈ −0.00001 eventually become signifi-
cant when L is excessively large. In the considered case, for a specified desired relative accuracy
of 10−14, the double-precision version lerchphi.c yields a value of 9.59714 89709 9796 × 10−4

which has to be compared to the true value of 9.59714 89709 9654 . . .×10−4 obtained with arith-
metic of enhanced accuracy. The relative accuracy of the result obtained with double-precision
arithmetic is only 10−12 and thus smaller than the specified accuracy goal.

Case 2. The term with n = 3 in Eq. (1) dominates the sum, and its calculation entails consider-
able loss of numerical significance in forming the difference 3−3.00000 00000 0001, corresponding
to a loss of 14 significant decimals. The double-precision version yields a value of 2.58 . . .× 1017,
which has to be compared to the value 2.70 . . .× 1017 obtained with the extended-precision ver-
sion. It is natural that after a loss of 14 decimals at an intermediate stage of a calculation, the
final answer will provide not more than two significant decimals if double-precision arithmetic
(roughly 16 decimals) is used.

Consequently, both above cases find a solution in the extended-precision version of the code
which is discussed in the next section.

8 Extended Precision

The file lerchphimp.cc, written in C++, contains a version of lerchphi that uses multiprecision
software libraries, e.g. [9, 10], to perform all floating-point arithmetic. The lerchphimp.cc-code
and the testing program testmp.cc use the multiprecision library [9]; running the tests reveals
that calculations in extended precision give correct results for the two problematic cases listed
in Eq. (14).

For the 8 representative example cases considered in the testing routine, we have also carried
out calculations with our own Mathematica-based [11] implementation of the CNCT (file lerch-
phi.m) and we compared with Mathematica’s built-in LerchPhi routine. The speed comparison
of lerchphimp.cc and Mathematica’s built-in LerchPhi is in favour of lerchphimp.cc for the
8 example calculations considered, and final results are in mutual agreement.

Reports on further tests and comparisons are always welcome to the authors.

References

[1] S. V. Aksenov, M. A. Savageau, U. D. Jentschura, J. Becher, G. Soff, and P. J. Mohr,
Application of the Combined Nonlinear-Condensation Transformation to Problems in Sta-
tistical Analysis and Theoretical Physics, Comput. Phys. Commun. 150, 1 (2003), e-print
math.NA/0207086.

7

[2] S. V. Aksenov and U. D. Jentschura, C and Mathematica Programs for Calculation of
Lerch’s Transcendent,
available at http://aksenov.freeshell.org/ and
http://tqd1.physik.uni-freiburg.de/˜ulj.

[3] H. Bateman, Higher Transcendental Functions (McGraw-Hill, New York, NY, 1953), Vol. 1.

[4] U. D. Jentschura, P. J. Mohr, G. Soff, and E. J. Weniger, Comput. Phys. Commun. 116,
28 (1999).

[5] A. van Wijngaarden, in Cursus: Wetenschappelijk Rekenen B, Process Analyse (Stichting
Mathematisch Centrum, Amsterdam, 1965), pp. 51–60.

[6] A. Sidi, Math. Comput. 33, 315 (1979).

[7] E. J. Weniger, Comput. Phys. Rep. 10, 189 (1989).

[8] J. W. Daniel, Math. Comput. 23, 91 (1969).

[9] D. H. Bailey et al., High precision arithmetic software,
available at http://www.nersc.gov/˜dhbailey/mpdist/mpdist.html.

[10] K. M. Briggs, Double-double floating point arithmetic,
available at http://www.btexact.com/people/briggsk2/doubledouble.html.

[11] S. Wolfram, Mathematica-A System for Doing Mathematics by Computer (Addison-Wesley,
Reading, MA, 1988).

8

